login
A146310
Good approximation to the 10^n-th lower twin prime.
1
100, 3380, 75610, 1257632, 18456351, 252177334, 3285912624, 41374714817, 507584081641, 6100475249386, 72109024427766, 840671492062887, 9687559620379066, 110531285543842366, 1250315111094881329
OFFSET
1,1
COMMENTS
a(10) = 6100475249386 has relative 0.000000698 error from the actual value 6100479510551.
FORMULA
Pi2(n) = number of twin primes <= n.
Twinpi(n) = number of twin prime pairs < n
Li_2(n)=intnum(t=2,n,2*c_2/log(t)^2)
The relationship n = Pi2(twinpi(n)) is used with a bisection routine where
Pi2(n) is the Hardy-Littlewood integral approximation for number of twin
primes
PROG
(PARI) g(n) = {
print1(floor(twinx2(10)), ", ");
for(x=2, n, y=twinx(10^x); print1(floor(y)", "))
}
twinx(n) =
{
local(r1, r2, r, est);
r1 = n;
r2 = n*n;
for(x=1, 100,
r=(r1+r2)/2.;
/*Hardy-Littlewood integral approximation for pi_2(x).*/
est = Li_2(r);
if(est <= n, r1=r, r2=r);
);
r;
}
twinx2(n) =
{
local(x, tx, r1, r2, r, pw, b, e, est);
if(n==1, return(3));
b=10;
pw=log(n)/log(b);
m=pw+1;
r1 = 0;
r2 = 7.213;
for(x=1, 100,
r=(r1+r2)/2;
est = b^(m+r);
tx = Li_2(est);
if(tx <= b^pw, r1=r, r2=r);
);
est;
}
Li_2(x)=intnum(t=2, x, 2*0.660161815846869573927812110014555778432623/log(t)^2)
CROSSREFS
Sequence in context: A200937 A112889 A118490 * A117685 A091134 A017816
KEYWORD
nonn
AUTHOR
Cino Hilliard, Oct 29 2008
STATUS
approved