This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A146302 a(n) = (8*n+5)*(8*n+9). 1
 45, 221, 525, 957, 1517, 2205, 3021, 3965, 5037, 6237, 7565, 9021, 10605, 12317, 14157, 16125, 18221, 20445, 22797, 25277, 27885, 30621, 33485, 36477, 39597, 42845, 46221, 49725, 53357, 57117, 61005, 65021, 69165, 73437, 77837, 82365 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS f(y) = y^4*(1 + y^4) = y^4 - y^8 + y^12 - y^16 + y^20 - y^24 + ... int(f(y), y) = y^5/5 - y^9/9 + y^13/13 - y^17/17 + y^21/21 - y^25/25 + ... int(f(y), y=0..1) = 1/5 - 1/9 + 1/13 - 1/17 + 1/21 - 1/25 + ... = = (9 - 5)/(5*9) + (17 - 13)/(13*17) + (25 - 21)/(21*25) + ... = = 4/5/9 + 4/13/17 + 4/21/25 + ... int(f(y), y=0..1) = sum(4/(8*m+5)/(8*m+9), m=0..infinity) = = -1/8*sqrt(2)*Pi+1-1/4*sqrt(2)*log(1+sqrt(2)) = = 0.13302701266008896241... - Miklos Kristof, Nov 03 2008 LINKS Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA G.f: (45 + 86*x - 3*x^2)/(1-x)^3. E.g.f: (45 + 176*x + 64*x^2)*exp(x). a(n) = A004770(n) * A004768(n). - Reinhard Zumkeller, Oct 30 2008 MAPLE seq((8*m+5)*(8*m+9), m=0..40); # Miklos Kristof, Nov 03 2008 MATHEMATICA Table[(8n+5)(8n+9), {n, 0, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {45, 221, 525}, 40] (* Harvey P. Dale, Oct 10 2015 *) PROG (PARI) a(n)=(8*n+5)*(8*n+9) \\ Charles R Greathouse IV, Jun 17 2017 CROSSREFS Sequence in context: A158634 A091197 A184539 * A203835 A087442 A280059 Adjacent sequences:  A146299 A146300 A146301 * A146303 A146304 A146305 KEYWORD nonn,easy AUTHOR Miklos Kristof, Oct 29 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.