OFFSET
1,1
REFERENCES
Enoch Haga, Exploring Primes on Your PC and the Internet, 1994-2007. Pp. 30-31. ISBN 978-1-885794-24-6
EXAMPLE
a(1)=11 because this sequence includes consecutive runs of any length >1 and this ending term in a run of 2 is 11.
MAPLE
A145994 := proc()
local m, p, r, i, lp ;
m := 3 ;
p := 2 ;
r := 0 ;
for i from 2 to 1000 do
if modp(p, 4) = m then
r := r+1 ;
else
if r > 1 then
printf("%d, ", prevprime(p)) ;
end if;
r := 0;
end if;
p := nextprime(p) ;
end do:
end proc:
A145994() ; # R. J. Mathar, Aug 29 2018
MATHEMATICA
Last /@ Select[Split[Select[4Range[1000]+3, PrimeQ], #2 == NextPrime[#1]&], Length[#]>1&] (* Jean-François Alcover, Mar 26 2020 *)
PROG
(UBASIC) 10 'cluster primes
20 C=1
30 input "end #"; L
40 for N=3 to L step 2
50 S=int(sqrt(N))
60 for A=3 to S step 2
70 B=N/A
80 if int(B)*A=N then cancel for:goto 170
90 next A
100 C=C+1
110 E=N/4:E=int(E):R=N-(4*E)
120 if R=1 then print N; :C1=C1+1:T1=T1+1:print T1
130 if R=3 then T1=0
140 if R=3 then print " "; N; :C3=C3+1:T2=T2+1:print T2
150 if R=1 then T2=0
160 if T1>10 or T2>10 then stop
170 next
180 print "Total primes="; C; :print "Type A"; C1; "Type B"; C3
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Enoch Haga, Oct 26 2008
STATUS
approved