login
A145991
Final prime in a run of more than 1 consecutive primes == 1 (mod 4).
5
17, 41, 101, 113, 197, 233, 281, 317, 353, 409, 461, 521, 617, 677, 709, 773, 809, 857, 881, 941, 1013, 1097, 1117, 1217, 1249, 1301, 1381, 1433, 1493, 1553, 1601, 1613, 1657, 1697, 1721, 1741, 1801, 1877, 1901, 1949, 1997, 2081, 2129, 2141, 2161, 2237
OFFSET
1,1
REFERENCES
Enoch Haga, Exploring Primes on Your PC and the Internet, 1994-2007. Pp. 30-31. ISBN 978-1-885794-24-6
EXAMPLE
a(1)=17 because this sequence includes consecutive runs of any length and this ending term > 1 in a run of 2 (comprising 13 and 17) is 17.
PROG
(UBASIC)
10 'cluster primes
20 C=1
30 input "end #"; L
40 for N=3 to L step 2
50 S=int(sqrt(N))
60 for A=3 to S step 2
70 B=N/A
80 if int(B)*A=N then cancel for:goto 170
90 next A
100 C=C+1
110 E=N/4:E=int(E):R=N-(4*E)
120 if R=1 then print N; :C1=C1+1:T1=T1+1:print T1
130 if R=3 then T1=0
140 if R=3 then print " "; N; :C3=C3+1:T2=T2+1:print T2
150 if R=1 then T2=0
160 if T1>10 or T2>10 then stop
170 next
180 print "Total primes="; C; :print "Type A"; C1; "Type B"; C3
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Enoch Haga, Oct 26 2008
STATUS
approved