login
A145980
a(n) = 29 + 73*n + 37*n^2.
2
29, 139, 323, 581, 913, 1319, 1799, 2353, 2981, 3683, 4459, 5309, 6233, 7231, 8303, 9449, 10669, 11963, 13331, 14773, 16289, 17879, 19543, 21281, 23093, 24979, 26939, 28973, 31081, 33263, 35519, 37849, 40253, 42731, 45283, 47909, 50609, 53383, 56231, 59153, 62149, 65219, 68363
OFFSET
0,1
FORMULA
a(n) = A061037(4n+2)+A061037(4n+3)+A061037(4n+4)+A061037(4n+5).
From R. J. Mathar, Oct 31 2008 (Start)
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3).
G.f.: (29+52*x-7*x^2)/(1-x)^3. (End)
E.g.f.: (37*x^2 + 110*x + 29)*exp(x). - G. C. Greubel, Jan 29 2016
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {29, 139, 323}, 50] (* G. C. Greubel, Jan 29 2016 *)
PROG
(Magma) [29+73*n+37*n^2: n in [0..40]]; // Vincenzo Librandi, Aug 07 2011
(PARI) a(n)=29+73*n+37*n^2 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
Sequence in context: A118873 A247874 A162834 * A142622 A124957 A126416
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Oct 26 2008
EXTENSIONS
Indices in definition edited, extended beyond a(13) by R. J. Mathar, Oct 31 2008
STATUS
approved