login
Expansion of 1/(1-x*(1-8*x)).
7

%I #41 Dec 31 2023 11:35:28

%S 1,1,-7,-15,41,161,-167,-1455,-119,11521,12473,-79695,-179479,458081,

%T 1893913,-1770735,-16922039,-2756159,132620153,154669425,-906291799,

%U -2143647199,5106687193,22255864785,-18597632759,-196644551039,-47863488967,1525292919345

%N Expansion of 1/(1-x*(1-8*x)).

%C Row sums of Riordan array (1,1(1-8x)).

%H G. C. Greubel, <a href="/A145978/b145978.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (1,-8).

%F a(n) = a(n-1) - 8*a(n-2), a(0)=1, a(1)=1.

%F a(n) = Sum_{k=0..n} A109466(n,k)*8^(n-k).

%t LinearRecurrence[{1,-8},{1,1},50] (* _G. C. Greubel_, Jan 29 2016 *)

%o (Sage) [lucas_number1(n,1,8) for n in range(1, 27)] # _Zerinvary Lajos_, Apr 22 2009

%o (PARI) Vec(1/(1-x*(1-8*x)) + O(x^40)) \\ _Michel Marcus_, Jan 29 2016

%o (Magma) I:=[1,1]; [n le 2 select I[n] else Self(n-1) - 8*Self(n-2): n in [1..30]]; // _G. C. Greubel_, Jan 19 2018

%Y Cf. A010892, A107920, A106852, A106853, A106854, A145934, A145976.

%K sign,easy

%O 0,3

%A _Philippe Deléham_, Oct 26 2008