login
Weight distribution of [71,36,13] binary quadratic-residue (or QR) code.
0

%I #2 Mar 30 2012 16:51:01

%S 1,0,0,0,0,0,0,0,0,0,0,497,2485,0,0,47570,166495,0,0,5084310,13219206,

%T 0,0,154102305,308204610,0,0,1710651635,2688166855,0,0,7377935180,

%U 9222418975,0,0,12879738244,12879738244,0,0,9222418975

%N Weight distribution of [71,36,13] binary quadratic-residue (or QR) code.

%C Taken from the Tjhai-Tomlinson web site.

%H C. J. Tjhai and Martin Tomlinson, <a href="http://www.tech.plym.ac.uk/Research/fixed_and_mobile_communications/links/weightdistributions.htm">Weight Distributions of Quadratic Residue and Quadratic Double Circulant Codes over GF(2)</a>

%e The weight distribution is:

%e i A_i

%e 0 1

%e 11 497

%e 12 2485

%e 15 47570

%e 16 166495

%e 19 5084310

%e 20 13219206

%e 23 154102305

%e 24 308204610

%e 27 1710651635

%e 28 2688166855

%e 31 7377935180

%e 32 9222418975

%e 35 12879738244

%e 36 12879738244

%e 39 9222418975

%e 40 7377935180

%e 43 2688166855

%e 44 1710651635

%e 47 308204610

%e 48 154102305

%e 51 13219206

%e 52 5084310

%e 55 166495

%e 56 47570

%e 59 2485

%e 60 497

%e 71 1

%K nonn,fini

%O 0,12

%A _N. J. A. Sloane_, Apr 07 2009