login
a(n) is the smallest integer k such that log(1/log((1+k)^(1/k))) > n.
2

%I #21 Dec 31 2021 22:01:01

%S 5,24,91,315,1030,3265,10113,30811,92674,275947,814940,2390374,

%T 6971243,20231089,58462783,168314905,482990543,1381928691,3943632121,

%U 11227515044,31896566383,90440011395,255980057462,723342392122,2040937869097,5750599584280,16182211978468

%N a(n) is the smallest integer k such that log(1/log((1+k)^(1/k))) > n.

%C log(1/log((1+k)^(1/k))) = log(1/Hypergeometric2F1[1,1,2,-z]).

%H Alois P. Heinz, <a href="/A145914/b145914.txt">Table of n, a(n) for n = 1..2294</a>

%p a:= n-> ceil(-LambertW(-1, -exp(-n-exp(-n)))*exp(n)-1):

%p seq(a(n), n=1..40); # _Alois P. Heinz_, Mar 23 2017

%t a = {}; k = 1; Do[If[N[Log[1/Log[(1 + n)^(1/n)]]] > k, Print[n]; AppendTo[a, n]; k = k + 1], {n, 1, 1000000}]; a

%Y Cf. A145913.

%K nonn

%O 1,1

%A _Artur Jasinski_, Oct 24 2008

%E More terms from _Indranil Ghosh_, Mar 23 2017

%E a(16)-a(27) from _Alois P. Heinz_, Mar 23 2017