login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A145901 Triangle of f-vectors of the simplicial complexes dual to the permutohedra of type B_n. 19

%I

%S 1,1,2,1,8,8,1,26,72,48,1,80,464,768,384,1,242,2640,8160,9600,3840,1,

%T 728,14168,72960,151680,138240,46080,1,2186,73752,595728,1948800,

%U 3037440,2257920,645120,1,6560,377504,4612608,22305024,52899840

%N Triangle of f-vectors of the simplicial complexes dual to the permutohedra of type B_n.

%C The Coxeter group of type B_n may be realized as the group of n X n matrices with exactly one nonzero entry in each row and column, that entry being either +1 or -1. The order of the group is 2^n*n!. The orbit of the point (1,2,...,n) (or any sufficiently generic point (x_1,...,x_n)) under the action of this group is a set of 2^n*n! distinct points whose convex hull is defined to be the permutohedron of type B_n. The rows of this table are the f-vectors of the simplicial complexes dual to these type B permutohedra. Some examples are given in the Example section below. See A060187 for the corresponding table of h-vectors of type B permutohedra.

%H Sandrine Dasse-Hartaut and Pawel Hitczenko, <a href="http://arxiv.org/abs/1202.3092">Greek letters in random staircase tableaux</a> arXiv:1202.3092v1 [math.CO]

%H P. Bala, <a href="/A131689/a131689.pdf">Deformations of the Hadamard product of power series</a>

%H M. Dukes, C. D. White, <a href="http://arxiv.org/abs/1603.01589">Web Matrices: Structural Properties and Generating Combinatorial Identities</a>, arXiv:1603.01589 [math.CO], 2016.

%H S. Fomin, N. Reading, <a href="http://arxiv.org/abs/math.CO/0505518">Root systems and generalized associahedra</a>, Lecture notes for IAS/Park-City 2004.

%H Ghislain R. Franssens, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL9/Franssens/franssens13.html">On a Number Pyramid Related to the Binomial, Deleham, Eulerian, MacMahon and Stirling number triangles</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.4.1.

%H Shi-Mei Ma, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v20i1p11">A family of two-variable derivative polynomials for tangent and secant</a>, El J. Combinat. 20 (1) (2013) P11

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Truncated_cuboctahedron"> Truncated cuboctahedron</a>

%F T(n,k) = Sum_{i = 0..k} (-1)^(k-i)*binomial(k,i)*(2*i+1)^n.

%F Recurrence relation: T(n,k) = (2*k + 1)*T(n-1,k) + 2*k*T(n-1,k-1) with T(0,0) = 1 and T(0,k) = 0 for k >= 1.

%F Relation with type B Stirling numbers of the second kind: T(n,k) = 2^k*k!*A039755(n,k).

%F Row sums A080253. The matrix product A060187 * A007318 produces the mirror image of this triangle.

%F E.g.f.: exp(t)/(1 + x - x* exp(2*t)) = 1 + (1 + 2*x)*t + (1 + 8*x + 8*x^2 )*t^2/2! + ... .

%F From _Peter Bala_, Oct 13 2011: (Start)

%F The polynomials in the first column of the array ((1+t)*P^(-1)-t*P)^(-1), P Pascal's triangle and I the identity, are the row polynomials of this table.

%F The polynomials in the first column of the array ((1+t)*I-t*A062715)^(-1) are, apart from the initial 1, the row polynomials of this table with an extra factor of t. Cf. A060187. (End)

%F From _Peter Bala_, Jul 18 2013: (Start)

%F Integrating the above e.g.f. with respect to x from x = 0 to x = 1 gives Sum_{k = 0..n} (-1)^k*T(n,k)/(k + 1) = 2^n*Bernoulli(n,1/2), the n-th cosecant number.

%F The corresponding Type A result is considered in A028246 as Worpitzky's algorithm.

%F Also for n >= 0, Sum_{k = 0..2*n} (-1)^k*T(2*n,k)/((k + 1)*(k + 2)) = 1/2*2^(2*n)*Bernoulli(2*n,1/2) and for n >= 1, Sum_{k = 0..2*n-1} (-1)^k*T(2*n - 1,k)/((k + 1)*(k + 2)) = -1/2 * 2^(2*n)* Bernoulli(2*n,1/2).

%F The nonzero cosecant numbers are given by A001896/A001897. (End)

%F From _Peter Bala_, Jul 22 2014: (Start)

%F The row polynomials R(n,x) satisfy the recurrence equation R(n+1,x) = D(R(n,x)) with R(0,x) = 1, where D is the operator 1 + 2*x + 2*x(1 + x)*d/dx.

%F R(n,x) = 1/(1 + x)* Sum_{k = 0..inf} (2*k + 1)^n*(x/(1 + x))^k, valid for x in the open interval (-1/2, inf). Cf. A019538.

%F The shifted row polynomial x*R(n,x) = (1 + x)^n*P(n,x/(1 + x)) where P(n,x) denotes the n-th row polynomial of A060187.

%F The row polynomials R(n,x) have only real zeros.

%F Symmetry: R(n,x) = (-1)^n*R(n,-1 - x). Consequently the zeros of R(n,x) lie in the open interval (-1, 0). (End)

%F From _Peter Bala_, May 28 2015: (Start)

%F Recurrence for row polynomials: R(n,x) = 1 + x*Sum_{k = 0..n-1} binomial(n,k)2^(n-k)*R(k,x) with R(0,x) = 1.

%F For a fixed integer k, the expansion of the function A(k,z) := exp( Sum_{n >= 1} R(n,k)*z^n/n ) has integer coefficients and satisfies the functional equation A(k,z)^(k + 1) = 1/(1 - z)*( BINOMIAL(BINOMIAL(A(k,z))) )^k, where BINOMIAL(F(z))= 1/(1 - z)*F(z/(1 - z)) denotes the binomial transform of the o.g.f. F(z). A(k,z) = A(-(k + 1),-z). Cf. A019538.

%F For cases see A258377 (k = 1), A258378(k = 2), A258379 (k = 3), A258380 (k = 4) and A258381 (k = 5). (End)

%F T(n,k) = A154537(n,k)*k! = A039755(n,k)*(2^k*k!), 0 <= k <= n. - _Wolfdieter Lang_, Apr 19 2017

%F From _Peter Bala_, Jan 12 2018: (Start)

%F n-th row polynomial R(n,x) = (1 + 2*x) o (1 + 2*x) o ... o (1 + 2*x) (n factors), where o denotes the black diamond multiplication operator of Dukes and White. See example E13 in the Bala link.

%F R(n,x) = Sum_{k = 0..n} binomial(n,k)*2^k*F(k,x) where F(k,x) is the Fubini polynomial of order k, the k-th row polynomial of A019538. (End)

%e The triangle begins

%e n\k|..0.....1.....2.....3.....4.....5

%e =====================================

%e 0..|..1

%e 1..|..1.....2

%e 2..|..1.....8.....8

%e 3..|..1....26....72....48

%e 4..|..1....80...464...768...384

%e 5..|..1...242..2640..8160..9600..3840

%e ...

%e Row 2: the permutohedron of type B_2 is an octagon with 8 vertices and 8 edges. Its dual, also an octagon, has f-vector (1,8,8) - row 3 of this triangle.

%e Row 3: for an appropriate choice of generic point in R_3, the permutohedron of type B_3 is realized as the great rhombicuboctahedron, also known as the truncated cuboctahedron, with 48 vertices, 72 edges and 26 faces (12 squares, 8 regular hexagons and 6 regular octagons). See the Wikipedia entry and also [Fomin and Reading p.22]. Its dual polyhedron is a simplicial polyhedron, the disdyakis dodecahedron, with 26 vertices, 72 edges and 48 triangular faces and so its f-vector is (1,26,72,48) - row 4 of this triangle.

%p with(combinat):

%p T:= (n,k) -> add((-1)^(k-i)*binomial(k,i)*(2*i+1)^n,i = 0..k):

%p for n from 0 to 9 do

%p seq(T(n,k),k = 0..n);

%p end do;

%Y Cf. A019538 (f-vectors type A permutohedra), A060187 (h-vectors type B permutohedra), A080253 (row sums), A145905, A062715, A028246.

%Y Cf. A258377, A258378, A258379, A258380, A258381.

%Y Cf. A039755, A154537.

%K easy,nonn,tabl

%O 0,3

%A _Peter Bala_, Oct 26 2008

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 22 06:24 EST 2019. Contains 320389 sequences. (Running on oeis4.)