This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A145890 Triangle read by rows: T(n,k) = B(k)C(n-k), where B(j) is the central binomial coefficient binomial(2j,j) (A000984) and C(j) is the Catalan number binomial(2j,j)/(j+1) (A000108); 0 <= k <= n). 1
 1, 1, 2, 2, 2, 6, 5, 4, 6, 20, 14, 10, 12, 20, 70, 42, 28, 30, 40, 70, 252, 132, 84, 84, 100, 140, 252, 924, 429, 264, 252, 280, 350, 504, 924, 3432, 1430, 858, 792, 840, 980, 1260, 1848, 3432, 12870, 4862, 2860, 2574, 2640, 2940, 3528, 4620, 6864, 12870, 48620 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Sum of entries in row n is (1/2)binomial(2n+2,n+1) = A001700(n). T(n,0) = binomial(2n,n)/(n+1) = A000108(n) (the Catalan numbers). T(n,n) = binomial(2n,n) = A000984(n) (the central binomial coefficients). LINKS FORMULA T(n,k) = binomial(2k,k)*binomial(2n-2k,n-k)/(n-k+1) (0 <= k <= n). G.f. = G(t,x) = (1-sqrt(1-4x))/(2x*sqrt(1-4tx)). EXAMPLE Triangle starts:    1;    1,  2;    2,  2,  6;    5,  4,  6, 20;   14, 10, 12, 20, 70; MAPLE b:=proc(n) options operator, arrow: binomial(2*n, n) end proc: c:=proc(n) options operator, arrow: binomial(2*n, n)/(n+1) end proc: T:=proc(n, k) if k <= n then b(k)*c(n-k) else 0 end if end proc: for n from 0 to 8 do seq(T(n, k), k =0..n) end do; # yields sequence in triangular form CROSSREFS Cf. A000108, A000984, A001700. Sequence in context: A241543 A210740 A209820 * A097091 A094204 A088681 Adjacent sequences:  A145887 A145888 A145889 * A145891 A145892 A145893 KEYWORD nonn,tabl AUTHOR Emeric Deutsch, Nov 22 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 19 11:26 EDT 2019. Contains 328216 sequences. (Running on oeis4.)