This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A145888 Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} in which k is the largest entry in the cycle containing 1 (1 <= k <= n). 1
 1, 1, 1, 2, 1, 3, 6, 2, 4, 12, 24, 6, 10, 20, 60, 120, 24, 36, 60, 120, 360, 720, 120, 168, 252, 420, 840, 2520, 5040, 720, 960, 1344, 2016, 3360, 6720, 20160, 40320, 5040, 6480, 8640, 12096, 18144, 30240, 60480, 181440, 362880, 40320, 50400, 64800 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS Row sums are the factorials (A000142). T(n,n) = n!/2 = A001710(n) (n>=2). Sum_{k=1..n} k*T(n,k) = A121586(n). REFERENCES Solution to Problem 1831 by J. W. Grossman. Mathematics Magazine, 83, No. 5, 2010, pp. 392-393. LINKS J. W. Grossman, Solution to Problem 1831 proposed by Emeric Deutsch, Mathematics Magazine, 83, No. 5, 2010, pp. 392-393. FORMULA T(n,1)=(n-1)!; T(n,k)=n!/((n-k+1)(n-k+2)) for 2 <= k <= n. EXAMPLE T(4,3)=4 because we have (132)(4), (13)(24), (123)(4), (13)(2)(4). Triangle starts:     1;     1,   1;     2,   1,   3;     6,   2,   4,  12;    24,   6,  10,  20,  60;   120,  24,  36,  60, 120, 360; MAPLE T:=proc(n, k) if k=1 then factorial(n-1) elif k <= n then factorial(n)/((n-k+1)*(n-k+2)) else 0 end if end proc: for n to 10 do seq(T(n, k), k=1..n) end do; # yields sequence in triangular form CROSSREFS Cf. A000142, A001710, A121586. Sequence in context: A182928 A141476 A212360 * A213935 A106578 A238960 Adjacent sequences:  A145885 A145886 A145887 * A145889 A145890 A145891 KEYWORD nonn,tabl AUTHOR Emeric Deutsch, Nov 10 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 22 01:06 EDT 2019. Contains 321406 sequences. (Running on oeis4.)