|
|
A145716
|
|
Numbers Y such that 381*Y^2+127 is a square.
|
|
0
|
|
|
13, 26403, 53598077, 108804069907, 220872208313133, 448370474071590083, 910191841493119555357, 1847688989860558625784627, 3750807739225092517223237453, 7614137862937947949404546244963, 15456696110956295112198711654037437
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Table of n, a(n) for n=1..11.
Index entries for linear recurrences with constant coefficients, signature (2030,-1).
|
|
FORMULA
|
a(n+2) = 2030*a(n+1)-a(n).
a(n) = (13/2)*{[1015+52*sqrt(381)]^n+[1015-52*sqrt(381)]^n}+(1/3)*sqrt(381)*{[1015+52*sqrt(381)]^n- [1015-52*sqrt(381)]^n} with n>=0. - Paolo P. Lava, Nov 25 2008
G.f.: 13*x*(x+1) / (x^2-2030*x+1). - Colin Barker, Oct 21 2014
|
|
EXAMPLE
|
a(1)=13 because the first relation is 254^2=381*13^2+127.
|
|
PROG
|
(PARI) Vec(13*x*(x+1)/(x^2-2030*x+1) + O(x^20)) \\ Colin Barker, Oct 21 2014
|
|
CROSSREFS
|
Sequence in context: A241879 A185408 A123921 * A124990 A013752 A076811
Adjacent sequences: A145713 A145714 A145715 * A145717 A145718 A145719
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Richard Choulet, Oct 16 2008
|
|
EXTENSIONS
|
Editing and a(11) from Colin Barker, Oct 21 2014
|
|
STATUS
|
approved
|
|
|
|