login
A145716
Numbers Y such that 381*Y^2+127 is a square.
0
13, 26403, 53598077, 108804069907, 220872208313133, 448370474071590083, 910191841493119555357, 1847688989860558625784627, 3750807739225092517223237453, 7614137862937947949404546244963, 15456696110956295112198711654037437
OFFSET
1,1
FORMULA
a(n+2) = 2030*a(n+1)-a(n).
G.f.: 13*x*(x+1) / (x^2-2030*x+1). - Colin Barker, Oct 21 2014
EXAMPLE
a(1)=13 because the first relation is 254^2=381*13^2+127.
MATHEMATICA
LinearRecurrence[{2030, -1}, {13, 26403}, 15] (* Paolo Xausa, Jan 17 2024 *)
PROG
(PARI) Vec(13*x*(x+1)/(x^2-2030*x+1) + O(x^20)) \\ Colin Barker, Oct 21 2014
CROSSREFS
Sequence in context: A241879 A185408 A123921 * A124990 A013752 A076811
KEYWORD
easy,nonn
AUTHOR
Richard Choulet, Oct 16 2008
EXTENSIONS
Editing and a(11) from Colin Barker, Oct 21 2014
STATUS
approved