login
A145715
Numbers X such that there exists Y in N with X^2 = 381*Y^2 + 127.
1
254, 515366, 1046192726, 2123770718414, 4311253512187694, 8751842505970300406, 17766235975866197636486, 36065450279165875231766174, 73212846300470750854287696734, 148622041924505345068328792603846
OFFSET
1,1
FORMULA
a(n+2) = 2030*a(n+1) - a(n).
G.f.: -254*x*(x-1) / (x^2-2030*x+1). - Colin Barker, Oct 21 2014
EXAMPLE
a(1)=254 because the first relation is 254^2=381*13^2+127.
MATHEMATICA
LinearRecurrence[{2030, -1}, {254, 515366}, 10] (* Harvey P. Dale, Dec 21 2011 *)
CoefficientList[Series[254 (1 - x)/(x^2 - 2030 x + 1), {x, 0, 20}], x] (* Vincenzo Librandi, Oct 21 2014 *)
PROG
(PARI) Vec(-254*x*(x-1)/(x^2-2030*x+1) + O(x^20)) \\ Colin Barker, Oct 21 2014
(Magma) I:=[254, 515366]; [n le 2 select I[n] else 2030*Self(n-1)-Self(n-2): n in [1..15]]; // Vincenzo Librandi, Oct 21 2014
CROSSREFS
Sequence in context: A250566 A278155 A251860 * A145587 A283188 A334353
KEYWORD
nonn,easy
AUTHOR
Richard Choulet, Oct 16 2008
EXTENSIONS
Edited by Colin Barker, Oct 21 2014
STATUS
approved