login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Triangle T(n,k) = 2^(1 + floor((n-1)/2)) * A158893(n,k+1).
1

%I #13 Apr 01 2019 02:33:20

%S 2,16,2,60,8,4,88,12,8,4,232,32,24,16,8,288,40,32,24,16,8,688,96,80,

%T 64,48,32,16,800,112,96,80,64,48,32,16,1824,256,224,192,160,128,96,64,

%U 32,2048,288,256,224,192,160,128,96,64,32

%N Triangle T(n,k) = 2^(1 + floor((n-1)/2)) * A158893(n,k+1).

%C Row sums are 2, 18, 72, 112, 312, 408, 1024, 1248, 2976, 3488, ....

%D H. S. M. Coxeter, Regular Polytopes, 3rd ed., Dover, NY, 1973, pp. 159-162.

%e The triangle starts in row n=1 with columns 0 <= k < n as:

%e 2;

%e 16, 2;

%e 60, 8, 4;

%e 88, 12, 8, 4;

%e 232, 32, 24, 16, 8;

%e 288, 40, 32, 24, 16, 8;

%e 688, 96, 80, 64, 48, 32, 16;

%e 800, 112, 96, 80, 64, 48, 32, 16;

%e 1824, 256, 224, 192, 160, 128, 96, 64, 32;

%e 2048, 288, 256, 224, 192, 160, 128, 96, 64, 32;

%p A145684 := proc(n,k) if k = 0 then 7*n-6 ; else n-k; end if; 2^(1+floor((n-1)/2))*% ; end proc: # _R. J. Mathar_, Sep 02 2011

%t Clear[e, n, k];

%t e[n_, 0] := 7*n - 6;

%t e[n_, k_] := 0 /; k >= n;

%t e[n_, k_] := (e[n - 1, k]*e[n, k - 1] + 1)/e[n - 1, k - 1];

%t Table[Table[2^(Floor[(n - 1)/2] + 1)*e[n, k], {k, 0, n - 1}], {n, 1, 10}];

%t Flatten[%]

%K nonn,tabl

%O 1,1

%A _Roger L. Bagula_ and _Gary W. Adamson_, Mar 29 2009

%E Description simplified by _R. J. Mathar_, Sep 02 2011