OFFSET
1,2
COMMENTS
For numerator of polynomial of genus 1 and level n for m = 1 see A001008
Definition: The polynomial A[1,2n+1](m) = A[genus 1,level n] is here defined as
Sum_{d=1..n-1} m^(n-d)/d.
Few first A[1,n](m):
n=1: A[1,1](m)= 0;
n=2: A[1,2](m)= m;
n=3: A[1,3](m)= m/2 + m^2;
n=4: A[1,4](m)= m/4 + m^2/3 + m^3/2 + m^4.
General formula which uses these polynomials is:
(1/(n+1))Hypergeometric2F1[1,n,n+1,1/m] = Sum_{x>=0} m^(-x)/(x+n) = m^n*arctanh((2m-1)/(2m^2-2m+1)) - A[1,n](m) = m^n*log(m/(m-1)) - A[1,n](m).
The sequence of denominators is ?, 1, 2, 6, 12, 12, 12, 84, ... - Matthew J. Samuel, Jan 30 2011
MAPLE
A145662 := proc(n) add( 5^(n-d)/d, d=1..n-1) ; numer(%) ; end proc: # R. J. Mathar, Feb 01 2011
MATHEMATICA
m = 5; aa = {}; Do[k = 0; Do[k = k + m^(r - d)/d, {d, 1, r - 1}]; AppendTo[aa, Numerator[k]], {r, 1, 30}]; aa
CROSSREFS
KEYWORD
frac,nonn
AUTHOR
Artur Jasinski, Oct 16 2008
STATUS
approved