login
A145621
Numerator of the polynomial A_l(x) = sum_{d=1..l-1} x^(l-d)/d for index l=2n+1 evaluated at x=7.
2
105, 31087, 2538991, 248821433, 21946050833, 11828921402977, 7535022933740305, 3692161237533130831, 1025190103621701235981, 954451986471803883166747, 15589382445706130101521201
OFFSET
1,1
COMMENTS
For denominators see A145622. For general properties of A_l(x) see A145609.
LINKS
MAPLE
f:= n -> numer(add(7^(2*n+1-d)/d, d=1..2*n)):
map(f, [$1..40]); # Robert Israel, Jun 05 2016
MATHEMATICA
m = 7; aa = {}; Do[k = 0; Do[k = k + m^(2 r + 1 - d)/d, {d, 1, 2 r}]; AppendTo[aa, Numerator[k]], {r, 1, 25}]; aa (* Artur Jasinski *)
a[n_, m_]:=Integrate[(m-x^n)/(m-x), {x, 0, 1}]+(m^n-m)Log[m/(m-1)]
Table[7 a[2 n, 7] // FullSimplify // Numerator, {n, 1, 25}] (* Gerry Martens , Jun 04 2016 *)
CROSSREFS
Sequence in context: A368513 A295463 A339847 * A167779 A275461 A054862
KEYWORD
frac,nonn
AUTHOR
Artur Jasinski, Oct 14 2008
EXTENSIONS
Edited by R. J. Mathar, Aug 21 2009
STATUS
approved