This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A145602 a(n) is the number of walks from (0,0) to (0,3) that remain in the upper half-plane y >= 0 using 2*n +1 unit steps either up (U), down (D), left (L) or right (R). 5
 1, 24, 392, 5760, 81675, 1145144, 16032016, 225059328, 3173688180, 44986664800, 641087516256, 9183622822400, 132211882468575, 1912322889603000, 27781440618420000, 405248874740582400, 5933888308457316900 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Cf. A000891, which enumerates walks in the upper half-plane starting and finishing at the origin. See also A145600, A145601 and A145603. This sequence is the central column taken from the triangle A145598, which enumerates walks in the upper half-plane starting at the origin and finishing on the horizontal line y = 3. LINKS R. K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6 FORMULA a(n) = 2/(n+1)*binomial(2*n+2,n+3)*binomial(2*n+2,n-1). MAPLE with(combinat): a(n) = 2/(n+1)*binomial(2*n+2, n+3)*binomial(2*n+2, n-1); seq(a(n), n = 1..19); CROSSREFS A000891, A145598, A145600, A145601, A145603. Sequence in context: A022448 A025947 A007752 * A020447 A021894 A021694 Adjacent sequences:  A145599 A145600 A145601 * A145603 A145604 A145605 KEYWORD easy,nonn AUTHOR Peter Bala, Oct 15 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .