%I
%S 127,42,16,8,5,3
%N a(n) = number of numbers removed in each step of Eratosthenes' sieve for 2^8.
%C Number of steps in Eratosthenes' sieve for 2^n is A060967(n).
%C Number of primes less than 2^8 is equal = 2^8  (sum all of numbers in this sequence)  1 = A007053(8).
%t f3[k_Integer?Positive, i_Integer?Positive] := Module[{f, m, r, p}, p = Transpose[{r = Range[2, i], Prime[r]}];f[x_] := Catch[Fold[If[Mod[x, #2[[2]]] == 0, Throw[m[ #2[[1]]] = m[ #2[[1]]] + 1], #1] &, If[Mod[x, 2] == 0, Throw[m[1] = m[1] + 1]], p]]; Table[m[n] = 1, {n, i}]; f /@ Range[k]; Table[m[n], {n, i}]];nn = 8; kk = PrimePi[Sqrt[2^nn]]; t3 = f3[2^nn, kk] (* Bob Hanlon (hanlonr(AT)cox.net), Oct 14 2008 *)
%Y Cf. A006880, A122121, A145532A145540, A145583A145592.
%K fini,nonn
%O 1,1
%A _Artur Jasinski_ with assistance from Bob Hanlon (hanlonr(AT)cox.net), Oct 14 2008
