This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A145576 a(n) is the smallest prime with both exactly an n number of 0's and exactly an n number of 1's in its binary representation. a(n) = 0 if no such prime exists. 1
 2, 0, 37, 139, 541, 2141, 8287, 33119, 131519, 525247, 2098687, 8391679, 33561599, 134242271, 536895487, 2147548159, 8590061567, 34360196863, 137439412223, 549756861439, 2199026663423, 8796097216447, 35184380411903 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Robert Israel, Table of n, a(n) for n = 1..1000 EXAMPLE a(3) = 37 = 100101 (base 2) is the smallest prime with three 0's and three 1's in its binary representation. - R. J. Mathar, Oct 14 2008 MAPLE A000120 := proc(n) local d; add(d, d=convert(n, base, 2)) ; end: A080791 := proc(n) local d, dgs; dgs := convert(n, base, 2) ; nops(dgs)-add(d, d=dgs) ; end: A070939 := proc(n) max(1, ilog2(n)+1) ; end: A145576 := proc(n) local p, pbin; p := nextprime(2^(2*n-1)-1); while true do pbin := A070939(p) ; if pbin > 2*n then RETURN(0) ; elif pbin = 2*n then if A000120(p) = n and A080791(p) = n then RETURN(p) ; fi; fi; p := nextprime(p) ; od: end: seq(A145576(n), n=1..30) ; # R. J. Mathar, Oct 14 2008 # Alternative: F:= proc(n) local c, x;       c:= [\$n+1..2*n-2];       do         x:= 2^(2*n-1)+1+add(2^(2*n-1-c[i]), i=1..n-2);         if isprime(x) then return x fi;         c:= combinat:-prevcomb(c, 2*n-2)       od end proc: 2, 0, seq(F(n), n=3..30); # Robert Israel, Sep 24 2017 MATHEMATICA Table[SelectFirst[Prime@ Apply[Range, PrimePi@{2^(2 (n - 1)) + 1, 2^(2 n) - 1}], Union@ DigitCount[#, 2] == {n} &] /. k_ /; MissingQ@ k -> 0, {n, 12}] (* Michael De Vlieger, Sep 24 2017 *) CROSSREFS Cf. A066195, A061712. Sequence in context: A172388 A193052 A120489 * A178235 A214447 A230888 Adjacent sequences:  A145573 A145574 A145575 * A145577 A145578 A145579 KEYWORD base,nonn AUTHOR Leroy Quet, Oct 13 2008 EXTENSIONS Extended by R. J. Mathar and Ray Chandler, Oct 14 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 17 21:16 EDT 2019. Contains 328132 sequences. (Running on oeis4.)