login
A145525
Numbers X such that there exists Y in N : X^2=273*Y^2+91.
1
182, 264446, 384504302, 559068990662, 812885927918246, 1181935580124139022, 1718533520614570219742, 2498746557038004975365846, 3633175775399738619611720342, 5282635078684662914910466011422, 7680947771231724478541197968887246
OFFSET
1,1
FORMULA
a(n+2) = 1454*a(n+1)-a(n).
G.f.: -182*x*(x-1) / (x^2-1454*x+1). - Colin Barker, Oct 21 2014
EXAMPLE
a(1)=182 because the first relation is 182^2=273*11^2+91.
MATHEMATICA
LinearRecurrence[{1454, -1}, {182, 264446}, 20] (* Harvey P. Dale, Nov 03 2012 *)
CoefficientList[Series[182 (1 - x)/(x^2 - 1454 x + 1), {x, 0, 20}], x] (* Vincenzo Librandi, Oct 21 2014 *)
PROG
(PARI) Vec(-182*x*(x-1)/(x^2-1454*x+1) + O(x^20)) \\ Colin Barker, Oct 21 2014
(Magma) I:=[182, 264446]; [n le 2 select I[n] else 1454*Self(n-1)-Self(n-2): n in [1..15]]; // Vincenzo Librandi, Oct 21 2014
CROSSREFS
Sequence in context: A371805 A015306 A190830 * A028676 A228535 A248628
KEYWORD
easy,nonn
AUTHOR
Richard Choulet, Oct 12 2008
EXTENSIONS
Editing from Colin Barker, Oct 21 2014
STATUS
approved