login
A145318
Numbers X such that exists Y in N with X^2 = 93*Y^2+31.
1
434, 10546634, 256304299034, 6228707064577634, 151370038827061362434, 3678594677346538165293434, 89397207697505531665899670634, 2172530937786184753198155630454034, 52796846760682654174716046465394263634, 1283068967805578923967764608003855764379434
OFFSET
1,1
FORMULA
a(n+2) = 24302*a(n+1)-a(n).
G.f.: -434*x*(x-1)/(x^2-24302*x+1). - Colin Barker, Aug 23 2012
EXAMPLE
a(1) = 434 because the first result is: 434^2 = 93*45^2+31.
MATHEMATICA
CoefficientList[Series[434 (1 - x)/(x^2 - 24302 x + 1), {x, 0, 30}], x] (* Vincenzo Librandi, Nov 01 2014 *)
LinearRecurrence[{24302, -1}, {434, 10546634}, 20] (* Harvey P. Dale, Mar 04 2019 *)
PROG
(PARI) Vec(-434*x*(x-1)/(x^2-24302*x+1) + O(x^100)) \\ Colin Barker, Nov 01 2014
(Magma) I:=[434, 10546634]; [n le 2 select I[n] else 24302*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi Nov 01 2014
CROSSREFS
Sequence in context: A237386 A259294 A050507 * A054987 A054905 A160353
KEYWORD
easy,nonn
AUTHOR
Richard Choulet, Oct 07 2008
STATUS
approved