login
A145298
Smallest k such that k^2+1 is divisible by A002144(n)^5.
7
1068, 143044, 390112, 7745569, 6423465, 46464143, 23048345, 144762466, 404034898, 2153335831, 331407850, 1108900220, 2581164875, 760839155, 10734466938, 6595297216, 773302059, 61063137802, 31915893786, 112699451831
OFFSET
1,1
EXAMPLE
a(4) = 7745569 since A002144(4) = 29, 7745569^2+1 = 59993839133762 = 2*29^5*97*15077 and for no k < 7745569 does 29^5 divide k^2+1.
PROG
(PARI) {e=5; forprime(p=2, 200, if(p%4==1, q=p^e; m=q; while(!ispower(m-1, 2, &n), m=m+q); print1(n, ", ")))}
(Python)
from itertools import islice
from sympy import nextprime, sqrt_mod_iter
def A145298_gen(): # generator of terms
p = 1
while (p:=nextprime(p)):
if p&3==1:
yield min(sqrt_mod_iter(-1, p**5))
A145298_list = list(islice(A145298_gen(), 20)) # Chai Wah Wu, May 04 2024
CROSSREFS
Cf. A002144 (primes of form 4n+1), A002313 (-1 is a square mod p), A059321, A145296, A145297, A145299.
Sequence in context: A218564 A234880 A218565 * A145299 A328894 A289702
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, Oct 14 2008
STATUS
approved