login
A145275
a(n) = A145232(n+1)/A145232(n).
6
15005, 792070839820228500005, 311759807762174781605301007201736860141952393239819056256447450170889021063181630442743411596527196875005
OFFSET
1,1
COMMENTS
A member of the family of sequences of type:
(G^(k^(n + 1)) - (1 - G)^(k^(n + 1)))/(G^(k^n) - (1 - G)^(k^n)) where G = (1 + sqrt(5))/2.
For k=2 see A001566.
For k=3 see A002814(n+2).
For k=4 see A145274.
For k=5 see this sequence.
For k=6 see A145276.
For k=7 see A145277.
LINKS
FORMULA
a(n) = (G^(5^(n + 1)) - (1 - G)^(5^(n + 1)))/(G^(5^n) - (1 - G)^(5^n)) where G = (1 + sqrt(5))/2.
MATHEMATICA
G = (1 + Sqrt[5])/2; Table[Expand[(G^(5^(n + 1)) - (1 - G)^(5^(n + 1)))/Sqrt[5]]/Expand[(G^(5^n) - (1 - G)^(5^n))/Sqrt[5]], {n, 1, 5}]
KEYWORD
nonn,changed
AUTHOR
Artur Jasinski, Oct 06 2008
STATUS
approved