%I #4 Sep 25 2017 07:14:51
%S 1008,421344,901254816,77507914176,33392993024160,14400272882673216,
%T 80771130598914068544,13408007679419735378304,
%U 19679603271468316601505696,8496755026505881957246582080,215817577673249401714063184832,93197366130882174446119601563776,1006205363432069396407530278283307584
%N a(n) = numerator of Atkin polynomials A_n(j) evaluated at j = 1728.
%H M. Kaneko and D. Zagier, <a href="http://www2.math.kyushu-u.ac.jp/~mkaneko/papers/atkin.pdf">Supersingular j-invariants, hypergeometric series and Atkin's orthogonal polynomials</a>, pp. 97-126 of D. A. Buell and J. T. Teitelbaum, eds., Computational Perspectives on Number Theory, Amer. Math. Soc., 1998
%F See Maple code for formula.
%e 1008, 421344, 901254816/5, 77507914176, 33392993024160, 14400272882673216, 80771130598914068544/13, ...
%p af:=proc(a,n) mul(a+i,i=0..n-1); end; A1728:=n->-12^(3*n+1)*af(-1/12,n)*af(7/12,n)/(2*n-1)!;
%Y Cf. A145295, A145093.
%K nonn,frac
%O 1,1
%A _N. J. A. Sloane_, Feb 28 2009