%I #14 Apr 12 2023 09:04:01
%S 1,-48,756,-5888,24150,-36288,-117208,675840,-1022787,-1159200,
%T 5880732,-4451328,-7510594,5625984,18257400,15794176,-117400878,
%U 49093776,202566980,-142195200,-88609248,-282275136,428795256,510935040,-637480625,360508512,-1978535160
%N Coefficients in expansion of Delta'(q).
%C First derivative of cusp form Delta (see A000594).
%H Seiichi Manyama, <a href="/A145155/b145155.txt">Table of n, a(n) for n = 0..1000</a>
%H M. Kaneko and D. Zagier, <a href="http://www2.math.kyushu-u.ac.jp/~mkaneko/papers/atkin.pdf">Supersingular j-invariants, hypergeometric series and Atkin's orthogonal polynomials</a>, pp. 97-126 of D. A. Buell and J. T. Teitelbaum, eds., Computational Perspectives on Number Theory, Amer. Math. Soc., 1998
%F a(n) = (n+1) * A000594(n+1). - _Seiichi Manyama_, Feb 03 2017
%e G.f. = 1 - 2*24*q + 3*252*q^2 - 4*1472*q^3 + 5*4830*q^4 - 6*6048*q^5 - 7*16744*q^6 + ...
%p with(numtheory); E:=proc(k) series(1-(2*k/bernoulli(k))*add( sigma[k-1](n)*q^n, n=1..60),q,61); end; Delta:=series((E(4)^3-E(6)^2)/1728,q,60); diff(%,q);
%t a[n_] := (n+1)*RamanujanTau[n+1];
%t Table[a[n], {n, 0, 100}] (* _Jean-François Alcover_, Apr 12 2023 *)
%Y Cf. A000594.
%K sign
%O 0,2
%A _N. J. A. Sloane_, Feb 28 2009