This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A145137 Expansion of x/((1 - x - x^4)*(1 - x)^8). 5
 0, 1, 9, 45, 165, 496, 1297, 3058, 6655, 13586, 26323, 48829, 87308, 151282, 255125, 420234, 678086, 1074525, 1675754, 2576688, 3912574, 5875129, 8734923, 12872391, 18820765, 27325469, 39426248, 56570687, 80771068, 114821057, 162594985 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The coefficients of the recursion for a(n) are given by the 9th row of A145152. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (9, -36, 84, -125, 118, -56, -20, 61, -55, 28, -8, 1). FORMULA a(n) = [9, -36, 84, -125, 118, -56, -20, 61, -55, 28, -8, 1] * [a(n-1), ..., a(n-12)]. MAPLE col:= proc(k) local l, j, M, n; l:= `if`(k=0, [1, 0, 0, 1], [seq(coeff( -(1-x-x^4) *(1-x)^(k-1), x, j), j=1..k+3)]); M:= Matrix(nops(l), (i, j)-> if i=j-1 then 1 elif j=1 then l[i] else 0 fi); `if`(k=0, n->(M^n)[2, 3], n->(M^n)[1, 2]) end: a:= col(9): seq(a(n), n=0..40); MATHEMATICA CoefficientList[Series[x/((1-x-x^4)(1-x)^8), {x, 0, 40}], x] (* or *) LinearRecurrence[{9, -36, 84, -125, 118, -56, -20, 61, -55, 28, -8, 1}, {0, 1, 9, 45, 165, 496, 1297, 3058, 6655, 13586, 26323, 48829}, 40] (* Harvey P. Dale, Feb 22 2012 *) PROG (PARI) concat(0, Vec(1/((1-x-x^4)*(1-x)^8)+O(x^99))) \\ Charles R Greathouse IV, Sep 25 2012 CROSSREFS 9th column of A145153. Cf. A145152. Sequence in context: A229889 A243743 A145458 * A221142 A144902 A128643 Adjacent sequences:  A145134 A145135 A145136 * A145138 A145139 A145140 KEYWORD nonn,easy AUTHOR Alois P. Heinz, Oct 03 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 05:14 EST 2019. Contains 329839 sequences. (Running on oeis4.)