login
A145136
Expansion of x/((1 - x - x^4)*(1 - x)^7).
5
0, 1, 8, 36, 120, 331, 801, 1761, 3597, 6931, 12737, 22506, 38479, 63974, 103843, 165109, 257852, 396439, 601229, 900934, 1335886, 1962555, 2859794, 4137468, 5948374, 8504704, 12100779, 17144439, 24200381, 34049989, 47773928, 66866159, 93391324, 130201994
OFFSET
0,3
COMMENTS
The coefficients of the recursion for a(n) are given by the 8th row of A145152.
LINKS
Index entries for linear recurrences with constant coefficients, signature (8, -28, 56, -69, 49, -7, -27, 34, -21, 7, -1).
FORMULA
a(n) = 8a(n-1) -28a(n-2) +56a(n-3) -69a(n-4) +49a(n-5) -7a(n-6) -27a(n-7) +34a(n-8) -21a(n-9) +7a(n-10) -a(n-11), with a(0)=0, a(1)=1, a(2)=8, a(3)=36, a(4)=120, a(5)=331, a(6)=801, a(7)=1761, a(8)=3597, a(9)=6931, a(10)=12737
MAPLE
col:= proc(k) local l, j, M, n; l:= `if`(k=0, [1, 0, 0, 1], [seq(coeff( -(1-x-x^4) *(1-x)^(k-1), x, j), j=1..k+3)]); M:= Matrix(nops(l), (i, j)-> if i=j-1 then 1 elif j=1 then l[i] else 0 fi); `if`(k=0, n->(M^n)[2, 3], n->(M^n)[1, 2]) end: a:= col(8): seq(a(n), n=0..40);
MATHEMATICA
CoefficientList[Series[x/((1-x-x^4)*(1-x)^7), {x, 0, 40}], x] (* or *) LinearRecurrence[{8, -28, 56, -69, 49, -7, -27, 34, -21, 7, -1}, {0, 1, 8, 36, 120, 331, 801, 1761, 3597, 6931, 12737}, 40] (* Harvey P. Dale, Jan 03 2012 *)
PROG
(PARI) concat(0, Vec(1/((1-x-x^4)*(1-x)^7)+O(x^99))) \\ Charles R Greathouse IV, Sep 25 2012
CROSSREFS
8th column of A145153. Cf. A145152.
Sequence in context: A229888 A243742 A145457 * A290892 A144901 A054470
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Oct 03 2008
STATUS
approved