%I #6 Jun 06 2013 07:12:28
%S 1,5,18,56,155,386,876,1836,3597,6655,11726,19812,32279,50948,78200,
%T 117096,171513,246297,347434,482240,659571,890054,1186340,1563380,
%U 2038725,2632851,3369510,4276108,5384111,6729480,8353136,10301456,12626801,15388077,18651330
%N 1 + (9960 + (6804 + (2464 + (735 + (175 + (21 + n)*n)*n)*n)*n)*n)*n/5040.
%H Vincenzo Librandi, <a href="/A145129/b145129.txt">Table of n, a(n) for n = 0..1000</a>
%F G.f.: (x^4-4*x^3+6*x^2-3*x+1) / (1-x)^8.
%p a := n-> 1+ (9960+ (6804+ (2464+ (735+ (175+ (21+ n) *n) *n) *n) *n) *n) *n/5040: seq(a(n), n=0..40);
%t CoefficientList[Series[(x^4 - 4 x^3 + 6 x^2 - 3 x + 1) / (1 - x)^8, {x, 0, 50}], x] (* _Vincenzo Librandi_, Jun 06 2013 *)
%Y 8th row of A145153. See row 8 of A145140/A145141 for rational coefficients and A145142 for 5040 * coefficients of polynomial.
%K nonn,easy
%O 0,2
%A _Alois P. Heinz_, Oct 03 2008