login
A145089
Row 4 of square table A145085.
5
1, 1, 6, 71, 1291, 32186, 1030491, 40606281, 1911466016, 105145651821, 6645220590851, 476096681256716, 38249611004598701, 3415114289928480181, 336324126216378275806, 36299781235381103548731
OFFSET
0,3
COMMENTS
Let S(n,x) be the e.g.f. of row n of square table A145085, then the e.g.f.s satisfy: S(n,x) = exp( Integral S(n+1,x)^(n+1) dx ) for n>=0.
FORMULA
E.g.f.: A(x) = S(4,x) = exp( Integral S(5,x)^5 dx ) where S(n,x) is the e.g.f. of row n of square table A145085.
E.g.f.: A(x) = R(4,x)^(1/4) = exp( Integral R(5,x) dx ) where R(4,x) = e.g.f. of A145084 and R(5,x) = e.g.f. of row 5 of square table A145080.
PROG
(PARI) {a(n)=local(A=vector(n+5, j, 1+j*x)); for(i=0, n+4, for(j=0, n, m=n+4-j; A[m]=exp(m*intformal(A[m+1]+x*O(x^n))))); n!*polcoeff(A[4]^(1/4), n, x)}
(PARI) {a(n)=local(A=vector(n+5, j, 1+j*x)); for(i=0, n+4, for(j=0, n, m=n+4-j; A[m]=exp(intformal(A[m+1]^(m+1)+x*O(x^n))))); n!*polcoeff(A[4], n, x)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 01 2008
STATUS
approved