login
A145086
Row 0 of square table A145085.
6
1, 1, 2, 7, 39, 322, 3723, 57577, 1147188, 28557909, 866222535, 31362744620, 1332663774173, 65529062871157, 3684878011841690, 234605021214637355, 16766728751635089083, 1335146927494755758530, 117695398260381996143695
OFFSET
0,3
COMMENTS
Let S(n,x) be the e.g.f. of row n of square table A145085, then the e.g.f.s satisfy: S(n,x) = exp( Integral S(n+1,x)^(n+1) dx ) for n>=0.
LINKS
FORMULA
E.g.f.: A(x) = exp( Integral R(1,x) dx ) where R(1,x) is the e.g.f. of A145081, which is row 1 of square table A145080.
PROG
(PARI) {a(n)=local(A=vector(n+2, j, 1+j*x)); for(i=0, n+1, for(j=0, n, m=n+1-j; A[m]=exp(m*intformal(A[m+1]+x*O(x^n))))); n!*polcoeff(exp(intformal(A[1])), n, x)}
(PARI) {a(n)=local(A=vector(n+2, j, 1+j*x)); for(i=0, n+1, for(j=0, n, m=n+1-j; A[m]=exp(intformal(A[m+1]^(m+1)+x*O(x^n))))); n!*polcoeff(exp(intformal(A[1])), n, x)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 01 2008
STATUS
approved