OFFSET
0,2
COMMENTS
Let R(n,x) be the e.g.f. of row n of square table A145080, then the
e.g.f.s satisfy: R(n,x) = exp( n*Integral R(n+1,x) dx ) for n>=1.
FORMULA
PROG
(PARI) a(n)=local(A=vector(n+3, j, 1+j*x)); for(i=0, n+2, for(j=0, n, m=n+2-j; A[m]=exp(m*intformal(A[m+1]+x*O(x^n))))); n!*polcoeff(A[2], n, x)
(PARI) a(n)=local(A=vector(n+3, j, 1+j*x)); for(i=0, n+2, for(j=0, n, m=n+2-j; A[m]=exp(intformal(A[m+1]^(m+1)+x*O(x^n))))); n!*polcoeff(A[2]^2, n, x)
(PARI) a(n)=local(A=1); for(k=0, n-1, A=exp(intformal((n+1-k)*(A+x*O(x^n))))); n!*polcoeff(A, n)
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Jan 08 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 01 2008
STATUS
approved