%I #4 Feb 08 2022 23:29:31
%S 1,1,1,1,1,2,2,1,2,4,3,2,2,4,9,8,3,4,4,9,20,16,8,6,8,9,20,48,41,16,16,
%T 12,18,20,48,115,98,41,32,32,27,40,115,286,250,98,82,64,72,60,96,115,
%U 286,719
%N Eigentriangle, row sums = A000081 starting (1, 2, 4, 9, 20, 48, 115, ...).
%C Row sums = A000081 starting with offset 2: (1, 2, 4, 9, 20, 48, 115, ...).
%C Right border = (1, 1, 2, 4, 9, 20, 48, ...).
%C Left border = A051573: (1, 1, 1, 2, 3, 8, 16, 41, ...).
%C Sum of n-th row terms = rightmost term of next row.
%F Eigentriangle by rows, termwise products of A000081 starting with offset 2: (1, 2, 4, 9, 20, 48, ...) and row terms of an A051573 decrescendo triangle: (1; 1,1; 1,1,1; 2,1,1,1; 3,2,1,1,1; ...) where A051573 = (1, 1, 1, 2, 3, 8, 16, 41, ...).
%e First few rows of the triangle:
%e 1;
%e 1, 1;
%e 1, 1, 2;
%e 2, 1, 2, 4;
%e 3, 2, 2, 4, 9;
%e 8, 3, 4, 4, 9, 20;
%e 16, 8, 6, 8, 9, 20, 48;
%e 41, 16, 16, 12, 18, 20, 48, 115;
%e 98, 41, 32, 32, 27, 40, 48, 115, 286;
%e ...
%e Row 4 = (2, 1, 2, 4) = termwise products of (2, 1, 1, 1) and (1, 1, 2, 4).
%K eigen,nonn,tabl
%O 1,6
%A _Gary W. Adamson_, Sep 27 2008