login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A144927 Numbers n such that there exists an integer k with (n+7)^3-n^3=k^2. 4
7, 1162, 128191, 14100226, 1550897047, 170584575322, 18762752388751, 2063732178187666, 226991776848254887, 24967031721129850282, 2746146497547435276511, 302051147698496750566306, 33222880100337095127017527, 3654214759889381967221362042 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Colin Barker, Table of n, a(n) for n = 1..450

Index entries for linear recurrences with constant coefficients, signature (111,-111,1).

FORMULA

a(n+2) = 110*a(n+1) - a(n) + 378.

a(n) = -(7/2)+(21/4)*{[55+12*sqrt(21)]^n+[55-12*sqrt(21))^n}+(7/6)*sqrt(21)*{[55+12*sqrt(21)]^n-[55-12*sqrt(21)]^n}, with n>=0. [Paolo P. Lava, Nov 25 2008]

G.f.: 7*x*(-1-55*x+2*x^2) / ( (x-1)*(x^2-110*x+1) ). - R. J. Mathar, Nov 27 2011

a(n) = 7*A144929(n). - R. J. Mathar, Nov 27 2011

EXAMPLE

a(1)=7 because 14^3-7^3=49^2.

MATHEMATICA

Last /@ Table[n /. {ToRules[Reduce[n > 0 && k >= 0 && (n + 7)^3 - n^3 == k^2, n, Integers] /. C[1] -> c]} // Simplify, {c, 1, 14}] (* or *)

Rest@ CoefficientList[Series[7 x (-1 - 55 x + 2 x^2)/((x - 1) (x^2 - 110 x + 1)), {x, 0, 14}], x] (* Michael De Vlieger, Jul 14 2016 *)

PROG

(PARI) Vec(7*x*(-1-55*x+2*x^2)/((x-1)*(x^2-110*x+1)) + O(x^20)) \\ Colin Barker, Jul 14 2016

CROSSREFS

Cf. A144928, A144930, A144929.

Sequence in context: A259251 A259253 A203871 * A202133 A229431 A159994

Adjacent sequences:  A144924 A144925 A144926 * A144928 A144929 A144930

KEYWORD

easy,nonn

AUTHOR

Richard Choulet, Sep 25 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 21 05:01 EST 2017. Contains 294988 sequences.