login
A144897
Expansion of x/(1 - 4*x + 6*x^2 - 5*x^3 + 4*x^4 - 3*x^5).
1
0, 1, 4, 10, 21, 40, 71, 121, 204, 348, 609, 1097, 2021, 3767, 7035, 13082, 24160, 44318, 80883, 147201, 267702, 487225, 888115, 1621465, 2964090, 5422351, 9921404, 18150445, 33193146, 60679800, 110893986, 202625306, 370215059, 676438568, 1236053904
OFFSET
0,3
FORMULA
G.f.: x/(1 - 4*x + 6*x^2 - 5*x^3 + 4*x^4 - 3*x^5).
MAPLE
a:= n-> (Matrix(5, (i, j)-> if i=j-1 then 1 elif j=1 then [4, -6, 5, -4, 3, -1][i] else 0 fi)^n)[1, 2]: seq(a(n), n=0..40);
MATHEMATICA
CoefficientList[Series[x/(1 -4x +6x^2 -5x^3 +4x^4 -3x^5), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 06 2013 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 50); [0] cat Coefficients(R!( x/(1-4*x+6*x^2-5*x^3+4*x^4-3*x^5) )); // G. C. Greubel, Jul 27 2022
(Sage)
def A144897_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( x/(1-4*x+6*x^2-5*x^3+4*x^4-3*x^5) ).list()
A144897_list(50) # G. C. Greubel, Jul 27 2022
CROSSREFS
Sequence in context: A301174 A220907 A226405 * A001891 A266355 A265053
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 24 2008
EXTENSIONS
Definition corrected at the suggestion of Vincenzo Librandi by Alois P. Heinz, Jun 06 2013
STATUS
approved