login
A144869
Shadow transform of C(n+7,8) = A000581(n+7).
2
1, 1, 2, 1, 3, 1, 1, 1, 6, 2, 8, 1, 8, 1, 8, 1, 8, 6, 8, 1, 3, 6, 8, 1, 6, 7, 6, 1, 8, 7, 8, 1, 21, 14, 4, 7, 8, 8, 21, 1, 8, 2, 8, 8, 21, 7, 8, 1, 2, 6, 21, 4, 8, 5, 26, 1, 21, 7, 8, 6, 8, 13, 11, 1, 28, 21, 8, 11, 21, 10, 8, 6, 8, 5, 16, 4, 11, 21, 8, 1, 6, 8, 8, 2, 26, 6, 21, 7, 8, 20, 12, 7, 21, 13
OFFSET
1,3
LINKS
Lorenz Halbeisen and Norbert Hungerbuehler, Number theoretic aspects of a combinatorial function, Notes on Number Theory and Discrete Mathematics 5(4) (1999), 138-150; see Definition 7 for the shadow transform.
N. J. A. Sloane, Transforms.
MAPLE
shadow:= proc(p) proc(n) local j; add (`if` (modp(p(j), n)=0, 1, 0), j=0..n-1) end end: f:= proc(k) proc(n) binomial (n+k-1, k) end end: a:= n-> shadow (f(8))(n): seq (a(n), n=1..100);
CROSSREFS
8th column of A144871. Cf. A007318.
Sequence in context: A373368 A119804 A300977 * A247564 A193870 A058564
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 23 2008
STATUS
approved