|
|
A144835
|
|
Denominators of an Egyptian fraction for 1/zeta(2) = 0.607927101854... (A059956).
|
|
23
|
|
|
|
OFFSET
|
1,1
|
|
REFERENCES
|
Mohammad K. Azarian, Sylvester's Sequence and the Infinite Egyptian Fraction Decomposition of 1, Problem 958, College Mathematics Journal, Vol. 42, No. 4, September 2011, p. 330. Solution published in Vol. 43, No. 4, September 2012, pp. 340-342.
|
|
LINKS
|
Table of n, a(n) for n=1..8.
|
|
EXAMPLE
|
1/zeta(2) = 0.607927101854... = 1/2 + 1/10 + 1/127 + 1/18838 + ...
|
|
MATHEMATICA
|
a = {}; k = N[1/Zeta[2], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a (*Artur Jasinski*)
|
|
PROG
|
(PARI) x=1/zeta(2); while(x, t=1\x+1; print1(t", "); x -= 1/t) \\ Charles R Greathouse IV, Nov 08 2013
|
|
CROSSREFS
|
Cf. A001466, A006487, A006524, A006525, A006526, A069139, A110820, A117116, A118323, A118324, A118325.
Sequence in context: A333455 A334555 A202950 * A305028 A119191 A125993
Adjacent sequences: A144832 A144833 A144834 * A144836 A144837 A144838
|
|
KEYWORD
|
frac,nonn
|
|
AUTHOR
|
Artur Jasinski, Sep 22 2008
|
|
STATUS
|
approved
|
|
|
|