login
A144830
Numerators of the convergents to x = 1/(x^4+1).
0
1, 1, 16, 83521, 493639046268679584001
OFFSET
0,3
COMMENTS
These numbers are quartics. The recursion provides a method of solving the quintic x^5 + x - 1. In general, extending this notion, we can use the recursion x = 1/(x^(n-1)+1) to find a solution for n-th degree equations of the form x^n+x-1=0.
PROG
(PARI) x=0; for(j=1, 7, x=1/(x^4+1); print1((numerator(x))", "))
CROSSREFS
Sequence in context: A193135 A368326 A308507 * A278289 A298202 A364777
KEYWORD
frac,nonn
AUTHOR
Cino Hilliard, Sep 21 2008
STATUS
approved