login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A144815 Numerators of T(n,k), n>=0, 0<=k<=n, read by rows: T(n,k) is the coefficient of x^(2k+1) in polynomial t_n(x), used to define continuous and n times differentiable sigmoidal transfer functions. 3
1, 3, -1, 15, -5, 3, 35, -35, 21, -5, 315, -105, 189, -45, 35, 693, -1155, 693, -495, 385, -63, 3003, -3003, 9009, -2145, 5005, -819, 231, 6435, -15015, 27027, -32175, 25025, -12285, 3465, -429, 109395, -36465, 153153, -109395, 425425, -69615, 58905 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

All even coefficients of t_n have to be 0, because t_n is defined to be point-symmetric with respect to the origin, with vanishing n-th derivative for x=1.

A sigmoidal transfer function sigma_n: R->[ -1,1] can be defined as sigma_n(x) = 1 if x>1, sigma_n(x) = t_n(x) if x in [ -1,1] and sigma_n(x) = -1 if x<-1.

LINKS

Alois P. Heinz, Rows n = 0..44, flattened

FORMULA

See program.

EXAMPLE

1, 3/2, -1/2, 15/8, -5/4, 3/8, 35/16, -35/16, 21/16, -5/16, 315/128, -105/32, 189/64, -45/32, 35/128, 693/256, -1155/256, 693/128, -495/128, 385/256, -63/256 ... = A144815/A144816

As triangle:

    1;

    3/2,     -1/2;

   15/8,     -5/4,    3/8;

   35/16,   -35/16,  21/16,  -5/16;

  315/128, -105/32, 189/64, -45/32, 35/128;

MAPLE

t:= proc(n) option remember; local f, i, x; f:= unapply(simplify(sum('cat(a||(2*i+1)) *x^(2*i+1)', 'i'=0..n) ), x); unapply(subs(solve({f(1)=1, seq((D@@i)(f)(1)=0, i=1..n)}, {seq(cat(a||(2*i+1)), i=0..n)}), sum('cat(a||(2*i+1)) *x^(2*i+1)', 'i'=0..n) ), x); end: T:= (n, k)-> coeff(t(n)(x), x, 2*k+1): seq(seq(numer(T(n, k)), k=0..n), n=0..10);

MATHEMATICA

row[n_] := Module[{f, a, eq}, f = Function[x, Sum[a[2*k+1]*x^(2*k+1), {k, 0, n}]]; eq = Table[Derivative[k][f][1] == If[k == 0, 1, 0], {k, 0, n}]; Table[a[2*k+1], {k, 0, n}] /. Solve[eq] // First]; Table[row[n] // Numerator, {n, 0, 10}] // Flatten (* Jean-Fran├žois Alcover, Feb 03 2014 *)

Flatten[Table[Numerator[CoefficientList[Hypergeometric2F1[1/2, 1-n, 3/2, x^2]*(2*n)!/(n!*(n-1)!*2^(2*n-1)), x^2]], {n, 1, 9}]] (* Eugeniy Sokol, Aug 20 2019 *)

CROSSREFS

Denominators of T(n,k): A144816.

Column k=0 gives A001803.

Diagonal gives (-1)^n A001790(n).

Cf. A144702, A144703.

Sequence in context: A293558 A259841 A228540 * A065250 A092589 A048966

Adjacent sequences:  A144812 A144813 A144814 * A144816 A144817 A144818

KEYWORD

frac,sign,tabl,look

AUTHOR

Alois P. Heinz, Sep 21 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 28 11:49 EDT 2020. Contains 333083 sequences. (Running on oeis4.)