login
A144790
Consider the runs of 1's in the binary representation of n, each of these runs being on the edge of the binary representation n and/or being bounded by 0's. a(n) = the length of the shortest such run of 1's in binary n.
6
1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 1, 2, 1, 3, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 4, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 3, 1, 1, 2, 4, 1, 5, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 1
OFFSET
1,3
LINKS
EXAMPLE
19 in binary is 10011. The runs of 1's are as follows: (1)00(11). The shortest of these runs contains exactly one 1. So a(19) = 1.
MATHEMATICA
Array[Min@ Map[Length, Select[Split@ IntegerDigits[#, 2], First@ # == 1 &]] &, 105] (* Michael De Vlieger, Oct 26 2017 *)
CROSSREFS
Sequence in context: A337319 A159864 A345417 * A090996 A309736 A368010
KEYWORD
base,nonn
AUTHOR
Leroy Quet, Sep 21 2008
EXTENSIONS
Extended by Ray Chandler, Nov 04 2008
STATUS
approved