login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A144785 Variant of Sylvester's sequence: a(n+1) = a(n)^2 - a(n) + 1, with a(1) = 12 15
12, 133, 17557, 308230693, 95006159799029557, 9026170399758739819525199160586693, 81471752085480849000657595909467634426991447160798281416700808089557 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

REFERENCES

Mohammad K. Azarian, Sylvester's Sequence and the Infinite Egyptian Fraction Decomposition of 1, Problem 958, College Mathematics Journal, Vol. 42, No. 4, September 2011, p. 330. Solution published in Vol. 43, No. 4, September 2012, pp. 340-342

LINKS

Table of n, a(n) for n=1..7.

FORMULA

a(n) =3.39277252592669675143137065018187376847206615308598784654603692312172475924599026837940758013759324881455503678006543568111163817496672898^(2^n) a(n+1) = a(n)^2 - a(n) + 1, with a(1) = 11

MATHEMATICA

a = {}; r = 12; Do[AppendTo[a, r]; r = r^2 - r + 1, {n, 1, 10}]; a or Table[Round[3.39277252592669675143137065018187376847206615308598784654603692312172475924599026837940758013759324881455503678006543568111163817496672898^(2^n)], {n, 1, 8}] (*Artur Jasinski*)

NestList[#^2-#+1&, 12, 6] (* Harvey P. Dale, Jan 01 2016 *)

CROSSREFS

A000058, A082732, A144779, A144780, A144781, A144782, A144783, A144784, A144785, A144786, A144787, A144788

Sequence in context: A016123 A015457 A015469 * A214994 A208440 A218762

Adjacent sequences:  A144782 A144783 A144784 * A144786 A144787 A144788

KEYWORD

nonn

AUTHOR

Artur Jasinski, Sep 21 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 17 15:12 EST 2020. Contains 330958 sequences. (Running on oeis4.)