login
Variant of Sylvester's sequence: a(n+1) = a(n)^2 - a(n) + 1, with a(1) = 9.
15

%I #16 Sep 04 2020 06:10:59

%S 9,73,5257,27630793,763460694178057,582872231554839914154126117193,

%T 339740038317718918529575265905277902175236102890836244082057

%N Variant of Sylvester's sequence: a(n+1) = a(n)^2 - a(n) + 1, with a(1) = 9.

%H Mohammad K. Azarian, <a href="http://www.jstor.org/stable/10.4169/college.math.j.42.4.329">Sylvester's Sequence and the Infinite Egyptian Fraction Decomposition of 1, Problem 958</a>, College Mathematics Journal, Vol. 42, No. 4, September 2011, p. 330.

%H Mohammad K. Azarian, <a href="http://www.jstor.org/stable/10.4169/college.math.j.43.4.337">Sylvester's Sequence and the Infinite Egyptian Fraction Decomposition of 1, Solution</a> College Mathematics Journal, Vol. 43, No. 4, September 2012, pp. 340-342.

%F a(n) ~ c^(2^n) with c = 2.918012...

%F a(n+1) = a(n)^2 - a(n) + 1, with a(1) = 9.

%t a = {}; r = 9; Do[AppendTo[a, r]; r = r^2 - r + 1, {n, 1, 10}]; a

%t NestList[#^2-#+1&,9,10] (* _Harvey P. Dale_, Aug 31 2014 *)

%Y Cf. A000058, A082732, A144779, A144780, A144781, A144782, A144783, A144784, A144785, A144786, A144787, A144788.

%K nonn

%O 1,1

%A _Artur Jasinski_, Sep 21 2008