The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A144782 Variant of Sylvester's sequence: a(n+1) = a(n)^2 - a(n) + 1, with a(1) = 9 15
 9, 73, 5257, 27630793, 763460694178057, 582872231554839914154126117193, 339740038317718918529575265905277902175236102890836244082057, 115423293636125119010058921116641323017574325905706748548174179444923876042505937357640794991035512177751344518305269193 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 REFERENCES Mohammad K. Azarian, Sylvester's Sequence and the Infinite Egyptian Fraction Decomposition of 1, Problem 958, College Mathematics Journal, Vol. 42, No. 4, September 2011, p. 330.  Solution published in Vol. 43, No. 4, September 2012, pp. 340-342. LINKS FORMULA a(n) = 2.91801206914107730623214444894134996352995839335383330085312402083876802012832260405611668045651563117787923646098643456447806103907170831^(2^n) a(n+1) = a(n)^2 - a(n) + 1, with a(1) = 8. MATHEMATICA a = {}; r = 9; Do[AppendTo[a, r]; r = r^2 - r + 1, {n, 1, 10}]; a or Table[Round[2.91801206914107730623214444894134996352995839335383330085312402083876802012832260405611668045651563117787923646098643456447806103907170831^(2^n)], {n, 1, 8}] (*Artur Jasinski*) NestList[#^2-#+1&, 9, 10] (* Harvey P. Dale, Aug 31 2014 *) CROSSREFS Cf. A000058, A082732, A144779, A144780, A144781, A144782, A144783, A144784, A144785, A144786, A144787, A144788. Sequence in context: A197676 A197534 A015465 * A218872 A075232 A145524 Adjacent sequences:  A144779 A144780 A144781 * A144783 A144784 A144785 KEYWORD nonn AUTHOR Artur Jasinski, Sep 21 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 5 00:43 EDT 2020. Contains 333238 sequences. (Running on oeis4.)