login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A144782 Variant of Sylvester's sequence: a(n+1) = a(n)^2 - a(n) + 1, with a(1) = 9 15
9, 73, 5257, 27630793, 763460694178057, 582872231554839914154126117193, 339740038317718918529575265905277902175236102890836244082057, 115423293636125119010058921116641323017574325905706748548174179444923876042505937357640794991035512177751344518305269193 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

REFERENCES

Mohammad K. Azarian, Sylvester's Sequence and the Infinite Egyptian Fraction Decomposition of 1, Problem 958, College Mathematics Journal, Vol. 42, No. 4, September 2011, p. 330.  Solution published in Vol. 43, No. 4, September 2012, pp. 340-342.

LINKS

Table of n, a(n) for n=1..8.

FORMULA

a(n) = 2.91801206914107730623214444894134996352995839335383330085312402083876802012832260405611668045651563117787923646098643456447806103907170831^(2^n) a(n+1) = a(n)^2 - a(n) + 1, with a(1) = 8.

MATHEMATICA

a = {}; r = 9; Do[AppendTo[a, r]; r = r^2 - r + 1, {n, 1, 10}]; a or Table[Round[2.91801206914107730623214444894134996352995839335383330085312402083876802012832260405611668045651563117787923646098643456447806103907170831^(2^n)], {n, 1, 8}] (*Artur Jasinski*)

NestList[#^2-#+1&, 9, 10] (* Harvey P. Dale, Aug 31 2014 *)

CROSSREFS

Cf. A000058, A082732, A144779, A144780, A144781, A144782, A144783, A144784, A144785, A144786, A144787, A144788.

Sequence in context: A197676 A197534 A015465 * A218872 A075232 A145524

Adjacent sequences:  A144779 A144780 A144781 * A144783 A144784 A144785

KEYWORD

nonn

AUTHOR

Artur Jasinski, Sep 21 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 5 00:43 EDT 2020. Contains 333238 sequences. (Running on oeis4.)