login
Variant of Sylvester's sequence: a(n+1) = a(n)^2 - a(n) + 1, with a(1) = 6.
17

%I #19 Aug 30 2020 10:12:29

%S 6,31,931,865831,749662454731,561993796032558961827631,

%T 315837026779085485103718410756049100028793244531

%N Variant of Sylvester's sequence: a(n+1) = a(n)^2 - a(n) + 1, with a(1) = 6.

%H Hugo Pfoertner, <a href="/A144780/b144780.txt">Table of n, a(n) for n = 1..11</a>

%H Mohammad K. Azarian, <a href="http://www.jstor.org/stable/10.4169/college.math.j.42.4.329">Sylvester's Sequence and the Infinite Egyptian Fraction Decomposition of 1, Problem 958</a>, College Mathematics Journal, Vol. 42, No. 4, September 2011, p. 330.

%H Mohammad K. Azarian, <a href="http://www.jstor.org/stable/10.4169/college.math.j.43.4.337">Sylvester's Sequence and the Infinite Egyptian Fraction Decomposition of 1, Solution</a> College Mathematics Journal, Vol. 43, No. 4, September 2012, pp. 340-342.

%F a(n+1) = a(n)^2 - a(n) + 1, with a(1) = 6.

%F a(n) ~ c^(2^n) where is c is 2.350117384... (A144804).

%t a = {}; k = 6; Do[AppendTo[a, k]; k = k^2 - k + 1, {n, 1, 10}]; a

%Y Cf. A000058, A082732, A144779, A144781, A144782, A144783, A144784, A144785, A144786, A144787, A144788, A144804.

%K nonn,easy

%O 1,1

%A _Artur Jasinski_, Sep 21 2008

%E a(8) moved to b-file by _Hugo Pfoertner_, Aug 30 2020