login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of the golden ratio powered to itself.
5

%I #11 Jun 17 2022 03:22:35

%S 2,1,7,8,4,5,7,5,6,7,9,3,7,5,9,9,1,4,7,3,7,2,5,4,5,7,0,2,8,7,1,2,4,5,

%T 8,5,1,8,0,7,0,4,3,3,0,1,6,9,3,2,5,4,6,1,1,3,4,7,7,8,1,9,2,4,0,4,7,4,

%U 4,0,4,4,9,5,3,2,8,2,6,2,0,2,1,0,7,0,1,6,7,6,1,1,9,7,6,7,0,5,8,7,6,5,4,9,7

%N Decimal expansion of the golden ratio powered to itself.

%C See A092134 for the continued fraction of this value, phi^phi, where phi = (sqrt(5)+1)/2 = A001622. - _M. F. Hasler_, Oct 08 2014

%H G. C. Greubel, <a href="/A144749/b144749.txt">Table of n, a(n) for n = 1..10000</a>

%F Equals A001622^A001622.

%e Equals 2.178457567937599147372545702871245851807043301693254611347781924...

%t RealDigits[N[GoldenRatio^GoldenRatio,200]] (* _Vladimir Joseph Stephan Orlovsky_, May 27 2010 *)

%o (PARI) (t=(sqrt(5)+1)/2)^t \\ Use \p99 to get 99 digits; digits(%\.1^99) for the sequence of digits. - _M. F. Hasler_, Oct 08 2014

%o (SageMath) numerical_approx(golden_ratio^golden_ratio, digits=120) # _G. C. Greubel_, Jun 16 2022

%Y Cf. A001622, A104457, A098317, A094214, A139339, A139340, A144713.

%K cons,nonn

%O 1,1

%A _R. J. Mathar_, Sep 20 2008