login
Decimal expansion of phi/(phi^phi - 1), where phi is the golden ratio (1+sqrt(5))/2.
2

%I #10 Jun 17 2022 03:22:41

%S 1,3,7,3,0,0,9,9,6,8,9,3,8,9,6,8,0,6,0,4,3,7,0,9,2,4,4,7,2,2,5,9,5,9,

%T 8,1,3,3,5,1,6,8,2,9,6,0,0,8,1,2,0,9,9,2,6,0,6,6,6,8,2,4,4,2,9,7,6,6,

%U 3,9,4,3,9,3,2,5,5,7,6,0,9,2,1,4,8,5,0,2,8,1,8,4,4,4,4,8,9,2,0

%N Decimal expansion of phi/(phi^phi - 1), where phi is the golden ratio (1+sqrt(5))/2.

%C Contains the golden ratio, the unit one and a tetration of the golden ratio.

%H G. C. Greubel, <a href="/A144713/b144713.txt">Table of n, a(n) for n = 1..10000</a>

%e 1.373009968938968060437092447225959813351682960081209926...

%t RealDigits[GoldenRatio/(GoldenRatio^GoldenRatio-1),10,120][[1]] (* _Harvey P. Dale_, Dec 16 2017 *)

%o (SageMath) numerical_approx(golden_ratio/(golden_ratio^golden_ratio - 1), digits=120) # _G. C. Greubel_, Jun 16 2022

%Y Cf. A001622, A144749.

%K nonn,cons

%O 1,2

%A Daniel Akaiya (pi216n(AT)hotmail.com), Sep 19 2008

%E More terms from _N. J. A. Sloane_, Sep 19 2008