

A144670


Triangle read by rows where T(m,n)=2mn+m+n7


3



3, 0, 5, 3, 10, 17, 6, 15, 24, 33, 9, 20, 31, 42, 53, 12, 25, 38, 51, 64, 77, 15, 30, 45, 60, 75, 90, 105, 18, 35, 52, 69, 86, 103, 120, 137, 21, 40, 59, 78, 97, 116, 135, 154, 173, 24, 45, 66, 87, 108, 129, 150, 171, 192, 213, 27, 50, 73, 96, 119, 142, 165, 188, 211, 234, 257
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Numbers n such that, if 2^(s1)=n then [A144487] is not prime.
Let p (prime number), n=(p^215)/2 mod(p).


LINKS

Vincenzo Librandi, Rows n = 100, flattened


EXAMPLE

Triangle begins:
3;
0, 5;
3, 10, 17;
6, 15, 24, 33;
9, 20, 31, 42, 53;
12, 25, 38, 51, 64, 77;
15, 30, 45, 60, 75, 90, 105;
18, 35, 52, 69, 86, 103, 120, 137;
21, 40, 59, 78, 97, 116, 135, 154, 173;
24, 45, 66, 87, 108, 129, 150, 171, 192, 213;
= = = = = = = =


MATHEMATICA

t[n_, k_]:=2 n*k+n+k7; Table[t[n, k], {n, 12}, {k, n}] // Flatten (* Vincenzo Librandi, Oct 15 2012 *)


PROG

(MAGMA) [2*n*k + n + k 7: k in [1..n], n in [1..12]]; // Vincenzo Librandi, Oct 15 2012


CROSSREFS

Cf. A057197, A144487.
Sequence in context: A225744 A275393 A029840 * A011078 A259617 A159060
Adjacent sequences: A144667 A144668 A144669 * A144671 A144672 A144673


KEYWORD

tabl,sign


AUTHOR

Vincenzo Librandi, Jan 28 2009


STATUS

approved



