OFFSET
0,2
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..400 (terms 0..50 from Seiichi Manyama)
Vaclav Kotesovec, Recurrence (of order 4)
Vidunas, Raimundas Counting derangements and Nash equilibria Ann. Comb. 21, No. 1, 131-152 (2017).
FORMULA
a(n) ~ 2^(8*n + 15/2) / (81 * Pi^(3/2) * n^(3/2)). - Vaclav Kotesovec, Apr 02 2019
MAPLE
f:=n->add( add( add( add( (i+j+k+l)!/(i!*j!*k!*l!), i=0..n), j=0..n), k=0..n), l=0..n); [seq(f(n), n=0..20)];
MATHEMATICA
Table[Sum[(i + j + k + l)! / (i!*j!*k!*l!), {i, 0, n}, {j, 0, n}, {k, 0, n}, {l, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 02 2019 *)
Table[Sum[(1 + j + k + l + n)!/((1 + j + k + l)*j!*k!*l!), {j, 0, n}, {k, 0, n}, {l, 0, n}] / n!, {n, 0, 20}] (* Vaclav Kotesovec, Apr 03 2019 *)
Table[Sum[(1 + k + l + 2*n)! * HypergeometricPFQ[{1, -1 - k - l - n, -n}, {-1 - k - l - 2*n, -k - l - n}, 1] / ((1 + k + l + n)*k!*l!*n!), {k, 0, n}, {l, 0, n}]/n!, {n, 0, 20}] (* Vaclav Kotesovec, Apr 03 2019 *)
PROG
(PARI) {a(n) = sum(i=0, n, sum(j=0, n, sum(k=0, n, sum(l=0, n, (i+j+k+l)!/(i!*j!*k!*l!)))))} \\ Seiichi Manyama, Apr 02 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 01 2009
STATUS
approved