login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A144635 a(n) = 5^n*Sum_{ k=0..n } binomial(2*k,k)/5^k. 10
1, 7, 41, 225, 1195, 6227, 32059, 163727, 831505, 4206145, 21215481, 106782837, 536618341, 2693492305, 13507578125, 67693008145, 339066121115, 1697664211795, 8497396194275, 42522326235175, 212749477704695, 1064285646397915, 5323532330953295, 26625895085494075 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..23.

FORMULA

From Vaclav Kotesovec, Jun 12 2013: (Start)

G.f.: 1/((1-5*x)*sqrt(1-4*x)).

Recurrence: n*a(n) = (9*n-2)*a(n-1) - 10*(2*n-1)*a(n-2).

a(n) ~ 5^(n+1/2).  (End)

a(n) = 5^(n+1/2) - 2^(n+1)*(2*n+1)!!*hypergeom([1,n+3/2], [n+2], 4/5]/(5*(n+1)!). - Vladimir Reshetnikov, Oct 14 2016

MATHEMATICA

Table[5^n Sum[Binomial[2k, k]/5^k, {k, 0, n}], {n, 0, 30}] (* Harvey P. Dale, Aug 08 2011 *)

Round@Table[5^(n + 1/2) - 2^(n + 1) (2 n + 1)!! Hypergeometric2F1[1, n + 3/2, n + 2, 4/5]/(5 (n + 1)!), {n, 0, 20}] (* Round is equivalent to FullSimplify here, but is much faster - Vladimir Reshetnikov, Oct 14 2016 *)

PROG

(PARI) a(n) = 5^n*sum(k=0, n, binomial(2*k, k)/5^k); \\ Michel Marcus, Oct 14 2016

CROSSREFS

Cf. A006134, A082590, A132310, A002457.

Sequence in context: A191010 A239041 A081625 * A097165 A152268 A026002

Adjacent sequences:  A144632 A144633 A144634 * A144636 A144637 A144638

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Jan 21 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 26 16:58 EST 2020. Contains 338641 sequences. (Running on oeis4.)