login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A144635 a(n) = 5^n*Sum_{ k=0..n } binomial(2*k,k)/5^k. 10
1, 7, 41, 225, 1195, 6227, 32059, 163727, 831505, 4206145, 21215481, 106782837, 536618341, 2693492305, 13507578125, 67693008145, 339066121115, 1697664211795, 8497396194275, 42522326235175, 212749477704695, 1064285646397915, 5323532330953295, 26625895085494075 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..23.

FORMULA

From Vaclav Kotesovec, Jun 12 2013: (Start)

G.f.: 1/((1-5*x)*sqrt(1-4*x)).

Recurrence: n*a(n) = (9*n-2)*a(n-1) - 10*(2*n-1)*a(n-2).

a(n) ~ 5^(n+1/2).  (End)

a(n) = 5^(n+1/2) - 2^(n+1)*(2*n+1)!!*hypergeom([1,n+3/2], [n+2], 4/5]/(5*(n+1)!). - Vladimir Reshetnikov, Oct 14 2016

MATHEMATICA

Table[5^n Sum[Binomial[2k, k]/5^k, {k, 0, n}], {n, 0, 30}] (* Harvey P. Dale, Aug 08 2011 *)

Round@Table[5^(n + 1/2) - 2^(n + 1) (2 n + 1)!! Hypergeometric2F1[1, n + 3/2, n + 2, 4/5]/(5 (n + 1)!), {n, 0, 20}] (* Round is equivalent to FullSimplify here, but is much faster - Vladimir Reshetnikov, Oct 14 2016 *)

PROG

(PARI) a(n) = 5^n*sum(k=0, n, binomial(2*k, k)/5^k); \\ Michel Marcus, Oct 14 2016

CROSSREFS

Cf. A006134, A082590, A132310, A002457.

Sequence in context: A191010 A239041 A081625 * A097165 A152268 A026002

Adjacent sequences:  A144632 A144633 A144634 * A144636 A144637 A144638

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Jan 21 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 18 18:29 EDT 2019. Contains 327180 sequences. (Running on oeis4.)