login
Denominators of an asymptotic series for the factorial function (Stirling's formula with half-shift).
6

%I #19 Sep 23 2016 12:58:48

%S 1,24,1152,414720,39813120,6688604160,4815794995200,115579079884800,

%T 22191183337881600,263631258054033408000,88580102706155225088000,

%U 27636992044320430227456000,39797268543821419527536640000

%N Denominators of an asymptotic series for the factorial function (Stirling's formula with half-shift).

%C From _Peter Luschny_, Feb 24 2011 (Start):

%C G_n = A182935(n)/A144618(n). These rational numbers provide the coefficients for an asymptotic expansion of the factorial function.

%C The relationship between these coefficients and the Bernoulli numbers are due to De Moivre, 1730 (see Laurie). (End)

%C Also denominators of polynomials mentioned in A144617.

%C Also denominators of polynomials mentioned in A144622.

%H Chris Kormanyos, <a href="/A144618/b144618.txt">Table denominators of u_k for k=0..121</a>

%H Dirk Laurie, <a href="http://dip.sun.ac.za/~laurie/papers/computing_gamma.pdf">Old and new ways of computing the gamma function</a>, page 14, 2005.

%H Peter Luschny, <a href="http://www.luschny.de/math/factorial/approx/SimpleCases.html">Approximation Formulas for the Factorial Function.</a>

%H W. Wang, <a href="http://dx.doi.org/10.1016/j.jnt.2015.12.016">Unified approaches to the approximations of the gamma function</a>, J. Number Theory (2016).

%F z! ~ sqrt(2 Pi) (z+1/2)^(z+1/2) e^(-z-1/2) Sum_{n>=0} G_n / (z+1/2)^n.

%F - _Peter Luschny_, Feb 24 2011

%e G_0 = 1, G_1 = -1/24, G_2 = 1/1152, G_3 = 1003/414720.

%p G := proc(n) option remember; local j,R;

%p R := seq(2*j,j=1..iquo(n+1,2));

%p `if`(n=0,1,add(bernoulli(j,1/2)*G(n-j+1)/(n*j),j=R)) end:

%p A144618 := n -> denom(G(n)); seq(A144618(i),i=0..12);

%p # _Peter Luschny_, Feb 24 2011

%t a[0] = 1; a[n_] := a[n] = Sum[ BernoulliB[j, 1/2]*a[n-j+1]/(n*j), {j, 2, n+1, 2}]; Table[a[n] // Denominator, {n, 0, 12}] (* _Jean-François Alcover_, Jul 26 2013, after Maple *)

%Y Cf. A001163, A001164, A182935, A144617, A144622.

%K nonn,frac

%O 0,2

%A _N. J. A. Sloane_, Jan 15 2009, based on email from Chris Kormanyos (ckormanyos(AT)yahoo.com)

%E Added more terms up to polynomial number u_12, v_12 for the denominators of u_k, v_k. Christopher Kormanyos (ckormanyos(AT)yahoo.com), Jan 31 2009

%E Typo in definition corrected Aug 05 2010 by _N. J. A. Sloane_

%E A-number in definition corrected - _R. J. Mathar_, Aug 05 2010

%E Edited and new definition by Peter Luschny, Feb 24 2011