This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A144535 Numerators of continued fraction convergents to sqrt(3)/2. 4
 0, 1, 6, 13, 84, 181, 1170, 2521, 16296, 35113, 226974, 489061, 3161340, 6811741, 44031786, 94875313, 613283664, 1321442641, 8541939510, 18405321661, 118973869476, 256353060613, 1657092233154, 3570537526921, 23080317394680, 49731172316281, 321467351292366 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 Index entries for linear recurrences with constant coefficients, signature (0,14,0,-1). FORMULA a(n) = 14*a(n-2)-a(n-4). G.f.: x*(1+6*x-x^2)/((1-4*x+x^2)*(1+4*x+x^2)). - Colin Barker, Apr 14 2012 a(n) = ((-(-2-sqrt(3))^n*(-3+sqrt(3))+(2-sqrt(3))^n*(-3+sqrt(3))-(3+sqrt(3))*((-2+sqrt(3))^n-(2+sqrt(3))^n)))/(8*sqrt(3)). - Colin Barker, Mar 27 2016 EXAMPLE 0, 1, 6/7, 13/15, 84/97, 181/209, 1170/1351, 2521/2911, 16296/18817, 35113/40545, ... MAPLE with(numtheory); Digits:=200: cf:=convert(evalf(sqrt(3)/2, confrac); [seq(nthconver(cf, i), i=0..100)]; MATHEMATICA CoefficientList[Series[x (1 + 6 x - x^2)/((1 - 4 x + x^2) (1 + 4 x + x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 10 2013 *) Numerator[Convergents[Sqrt[3]/2, 30]] (* or *) LinearRecurrence[{0, 14, 0, -1}, {0, 1, 6, 13}, 30] (* Harvey P. Dale, Feb 10 2014 *) PROG (MAGMA) I:=[0, 1, 6, 13]; [n le 4 select I[n] else 14*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 10 2013 (PARI) Vec(x*(1+6*x-x^2)/((1-4*x+x^2)*(1+4*x+x^2)) + O(x^30)) \\ Colin Barker, Mar 27 2016 CROSSREFS Cf. A126664, A144536, A002531/A002530. Bisections give A001570, A011945. Sequence in context: A119110 A041305 A215755 * A042641 A292121 A236250 Adjacent sequences:  A144532 A144533 A144534 * A144536 A144537 A144538 KEYWORD nonn,frac,easy AUTHOR N. J. A. Sloane, Dec 29 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 22 10:41 EDT 2019. Contains 325219 sequences. (Running on oeis4.)